DataFrame的缺失数据判断和处理(1)

 时间:2024-10-11 18:25:36

1、前提:加载numpy、pandas、和Series,DataFrame。生成一个含有缺失值的Series,命名为s1,如图

DataFrame的缺失数据判断和处理(1)

3、Series缺失值的删除。s1.dropna()为删除s1的缺失值后的数倌栗受绽据,s1[s1.notnull()]则为取出s1中不是缺失值的数据,从2个方面得到的结果一样,也就是所谓的条条道路通罗马,如图

DataFrame的缺失数据判断和处理(1)

5、df2.dropna()默认删除了含有缺失值的所有行,如果我们只需要把某一行所有数据为缺失值的才删除,那么需要用how=‘all’进行覆诈端螽限制,如df2.dropna(how='all'),操作如图

DataFrame的缺失数据判断和处理(1)
  • 水煮鱼的做法
  • 孩子看手机怎么办,怎么能戒掉
  • 没有学籍怎么补办学籍
  • 四张图表读懂酒店行业发展现状
  • 原神新角色申鹤被喷原因
  • 热门搜索
    玉龙雪山旅游 桂林旅游攻略自由行 呼伦贝尔草原旅游攻略 云南普者黑旅游攻略 驴妈妈旅游网官网 安徽旅游地图 河南省旅游景点 上海旅游高等专科学校教务处 旅游签证办理流程 印度尼西亚旅游