x->0,x-sinx~1-cosx 证明

 时间:2026-02-14 03:11:42

1、第一步,问题转化

求证x->0,x-sinx~1-cosx。相当于证明 (s-sinx)'=1-cosx。 

2、第二步,套用求导公式

[f(x+dx)-f(x)]/dx

令f(x)=x-sinx,求f(x)'。

[f(x+dx)-f(x)]/dx

->{[(x+dx)-sin(x+dx)]-(x-sinx)}/dx

={[(x+dx)-(sinxcosdx+cosxsindx)]-(x-sinx)}/dx

=(x+dx-sinxcosdx-cosxsindx-x+sinx)/dx

=(x-x+dx-sinxcosdx+sinx-cosxsindx)/dx

=(dx-sinxcosdx+sinx-cosxsindx)/dx

=(dx/dx)-(sinxcosdx-sinx+cosxsindx)dx

=1-(sinxcosdx-sinx+cosxsindx)/dx

因为x->0,cosdx~1

所以上式

=1-(sinx*1-sinx+cosxsindx)/dx

=1-(sinx-sinx+cossindx)/dx

=1-(cosxsindx)/dx

因为x->0,(sindx)/dx~1

所以上式

=1-cosx*(sindx)/dx

=1-cosx

  • 不背单词APP怎么删除生词
  • 不背单词如何清空复习中的单词
  • 墨墨怎么组队
  • 六级考试有哪些技巧
  • ANKI怎么使用
  • 热门搜索
    韩国首尔旅游 贵阳市旅游局 所罗门群岛旅游 红色旅游线路 厦门旅游攻略住宿 青藏旅游 旅游特价 峨眉山旅游路线 防城港旅游景点大全 斐济旅游报价