请教关于二重积分坐标平移的问题!

 时间:2024-10-12 01:44:16

平移易七淄苷之后能利用对称性和奇偶性简化积分,被积分函数都化为常数区域面积之差就等于曲顶柱体的体积。

二重积器皆阄诟分同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

请教关于二重积分坐标平移的问题!

积分的线性性质

1、积分可加性

函数和(差)的二重积分等于各函数二重积分的和(差)。

2、积分满足数乘

被积函数的常系数因子可以提到积分号外,即 (k为常数)。

3、面积替代

设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积。

  • (1+x)^a的泰勒展开式是什么
  • 高数中求渐近线的方法
  • sgnx是什么函数
  • “爪型行列式”的计算方法及其应用
  • cmn的计算公式及步骤?
  • 热门搜索
    七月份适合去哪旅游 去山西旅游 呼和浩特旅游网 苏州市旅游景点 厦门岛内旅游景点 泰国旅游网 花莲旅游 平谷旅游网 中国旅游最好的地方 长崎旅游