1、计算步骤:1+cosx=2[cos(x/2)]^21/(1+cosx)=0.5[sec(x/2)]^2∫dx/(1+cosx)=∫0.5[sec(x/2)]^2dx=∫[sec(x/2)]^2d0.5x=∫dtan(x/2)=tan(x/2)+c

3、积分常用公式:1)∫0dx=c 不定积分的定义2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c4)∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+...
