1、可逆矩阵的定义是:设A是n阶矩阵,如果存在n阶矩阵B使得AB=BA=E(单位矩阵)成立,则称A是可逆矩阵。

3、其次,若A矩阵的秩R(A)=n,则A的行列式|A|一定不等于0,所以也可以推出A矩阵可逆。

5、若齐次方程组Ax=0只有零解,则可推出矩阵A的秩R(A)=n,所以A的行列式不等于0,所以矩阵A可逆。

时间:2024-10-12 01:44:52
1、可逆矩阵的定义是:设A是n阶矩阵,如果存在n阶矩阵B使得AB=BA=E(单位矩阵)成立,则称A是可逆矩阵。
3、其次,若A矩阵的秩R(A)=n,则A的行列式|A|一定不等于0,所以也可以推出A矩阵可逆。
5、若齐次方程组Ax=0只有零解,则可推出矩阵A的秩R(A)=n,所以A的行列式不等于0,所以矩阵A可逆。