1、第一种从定义出发寻找一组非零常数,第二种求常数项的秩或者行列式,第三种寻找向量的个数是多少,如果多数向量可以由少数向量线性表示那么多数向量一定是线性相关。

3、考察极大线性无关组的定义,定义里说存在r个向量使得线性无关但是再加进去任何一个向量就变成线性相关的了。这里确定的是加入任何一个向量一定是线性相关的,但是这r个向量却不一定是线性无关的。

5、已知一个矩阵以及增广矩阵去证明b向量可以由A向量组线性表示,那么首先确定的就是A的秩假设为r那么加进去以后秩还是一样可以得到一个十字r(a1,a2,a3...at)=r(a1,a2,a3...at,b)容易发现其实就是线性表示的等价。
